6 research outputs found

    UWB system and algorithms for indoor positioning

    Get PDF
    This research work presents of study of ultra-wide band (UWB) indoor positioning considering different type of obstacles that can affect the localization accuracy. In the actual warehouse, a variety of obstacles including metal, board, worker and other obstacles will have NLOS (non-line-of-sight) impact on the positioning of the logistics package, which influence the measurement of the distance between the logistics package and the anchor , thereby affecting positioning accuracy. A new developed method attempts to improve the accuracy of UWB indoor positioning, through and improved positioning algorithm and filtering algorithm. In this project, simulate the warehouse environment in the laboratory, several simulation proves that the used Kalman filter algorithm and Markov algorithm can effectively reduce the error of NLOS. Experimental validation is carried out considering a mobile tag mounted on a robot platform.Este trabalho de pesquisa apresenta um estudo de posicionamento de banda ultra-larga (UWB) em ambientes internos considerando diferentes tipos de obstáculos que podem afetar a precisão de localização. No armazém real, uma variedade de obstáculos incluindo metal, placa, trabalhador e outros obstáculos terão impacto NLOS (não linha de visão) no posicionamento do pacote logístico, o que influencia a medição da distância entre o pacote logístico e a âncora, afetando assim a precisão do posicionamento. Um novo método desenvolvido tenta melhorar a precisão do posicionamento interno UWB, através de um algoritmo de posicionamento e algoritmo de filtragem aprimorados. Neste projeto, para simular o ambiente de warehouse em laboratório, diversas simulações comprovam que o algoritmo de filtro de Kalman e o algoritmo de Markov usados podem efetivamente reduzir o erro de NLOS. A validação experimental é realizada considerando um tag móvel montado em uma plataforma de robô

    Internet usage and household electricity consumption

    Get PDF
    This paper investigates the impact of the popularization and usage of the Internet on household electricity consumption in China, as well as the mediating role of sleep duration. By employing data from the China Family Panel Studies (CFPS) and employing the basic ordinary least squares (OLS) model, the mediation model, and the instrumental variable (IV) approach, we derive the following conclusions. The results from the basic OLS regression indicate a positive relationship between internet usage and household electricity expenditure, implying that households that use the Internet tend to have higher electricity bills. Subsequently, by introducing sleep duration as a mediating variable, we find that internet usage leads to shorter sleep duration, indirectly resulting in increased household electricity costs. To address potential endogeneity concerns, we employ the instrumental variable approach to correct for the impact of internet usage on household electricity consumption. In addition, through heterogeneity analysis, we found that internet usage impacts households with different characteristics

    MSSTNet: A Multi-Scale Spatiotemporal Prediction Neural Network for Precipitation Nowcasting

    No full text
    Convolution-based recurrent neural networks and convolutional neural networks have been used extensively in spatiotemporal prediction. However, these methods tend to concentrate on fixed-scale spatiotemporal state transitions and disregard the complexity of spatiotemporal motion. Through statistical analysis, we found that the distribution of the spatiotemporal sequence and the variety of spatiotemporal motion state transitions exhibit some regularity. In light of these statistics and observations, we propose the Multi-scale Spatiotemporal Neural Network (MSSTNet), an end-to-end neural network based on 3D convolution. It can be separated into three major child modules: a distribution feature extraction module, a multi-scale motion state capture module, and a feature decoding module. Furthermore, the MSST unit is designed to model multi-scale spatial and temporal information in the multi-scale motion state capture module. We first conduct the experiments on the MovingMNIST dataset, which is the most commonly used dataset in the field of spatiotemporal prediction, MSSTNet can achieve state-of-the-art results for this dataset, and ablation experiments demonstrate that the MSST unit has positive significance for spatiotemporal prediction. In addition, this paper applies the model to valuable precipitation nowcasting, due to efficiently capturing the multi-scale information of distribution and motion, the new MSSTNet model can predict the real-world radar echo more accurately
    corecore